Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development1[W][OPEN]
نویسندگان
چکیده
Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues. A total of 26,105 genes were found to be involved in programming seed development, including 1,614 transcription factors. Global comparisons of gene expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with the published nonseed high-throughput RNA sequencing data, we identified 91 transcription factors and 1,167 other seed-specific genes, which should help elucidate key mechanisms and regulatory networks that underlie seed development. In addition, correlation of gene expression with the pattern of DNA methylation revealed that hypomethylation of the gene body region should be an important factor for the expressional activation of seed-specific genes, especially for extremely highly expressed genes such as zeins. This study provides a valuable resource for understanding the genetic control of seed development of monocotyledon plants.
منابع مشابه
Dynamic transcriptome landscape of maize embryo and endosperm development.
Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize see...
متن کاملHigh-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development
Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynam...
متن کاملTemporal small RNA transcriptome profiling unraveled partitioned miRNA expression in developing maize endosperms between reciprocal crosses
In angiosperms, the endosperm nurtures the embryo and provides nutrients for seed germination. To identify the expression pattern of small interfering RNA in the developing maize endosperm, we have performed high-throughput small RNA transcriptome sequencing of kernels at 0, 3, and 5 days after pollination (DAP) and endosperms at 7, 10, and 15 DAP using B73 and Mo17 reciprocal crosses in previo...
متن کاملImproved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm
There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different org...
متن کاملTransport and Metabolism of a Sucrose Analog (1'-Fluorosucrose) into Zea mays L. Endosperm without Invertase Hydrolysis.
1'-Fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L., Pioneer Hybrid 3320) kernels with the same magnitude and kinetics as sucrose. (14)C-Label from [(14)C]FS and [(14)C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue...
متن کامل